# ELIMINATION OF THE 4-HYDROXYL GROUP OF THE ALKALOIDS RELATED TO MORPHINE—II\*

Y. K. SAWA, N. TSUJI and S. MAEDA Research Laboratory, Shionogi & Co., Ltd. Osaka, Japan

# (Received 13 March 1961)

Abstract Dihydrothebaine- $\phi$ , dihydrothebainone- $\Delta^4$ - enol methylether and dihydrothebainone were converted to the respective 4-phenylethers by Ullmann reaction in good yields. These phenylether derivatives were reduced to 4-desoxy compounds by sodium-liquid ammonia reduction.

Clemmensen reduction of the phenylether and the desoxy derivatives gave ( ...)-3-methoxy-4phenoxy-N-methyl-morphinan and (-)-3-methoxy-N-methylmorphinan respectively.

In a previous paper<sup>†</sup> the elimination of the 4-hydroxyl group of sinomenine and its derivatives was reported. The present paper is concerned with the synthesis of (-)-3-methoxy-N-methylmorphinan and its derivatives.

Recently, many N-methylmorphinan derivatives were synthesized from 1-benzyl-2methyl-1,2,3,4,5,6,7,8-octahydroisoquinoline derivatives by Grewe<sup>1</sup> and by Schnider.<sup>2</sup>

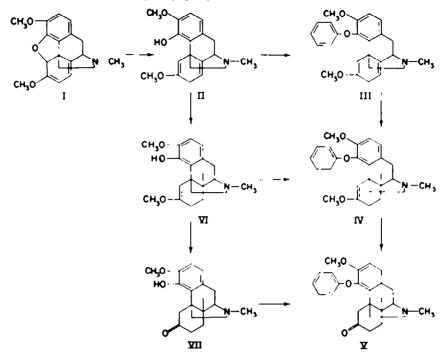
Among these compounds (—)-3-hydroxy-N-methylmorphinan has been found to have 3.5 times the activity of morphine as an analgesic. Elimination of the 4-hydroxyl group of thebaine derivatives may give some pharmacologically interesting compounds. The methods employed are the same as those used previously in the sinomenine series but using thebaine as a starting material.

In 1950, Bentley<sup>3</sup> succeeded in scission of the 4–5 oxygen bridge of thebaine (I) by the sodium-ammonia reduction and obtained dihydrothebaine- $\phi$  (II) in excellent vield.

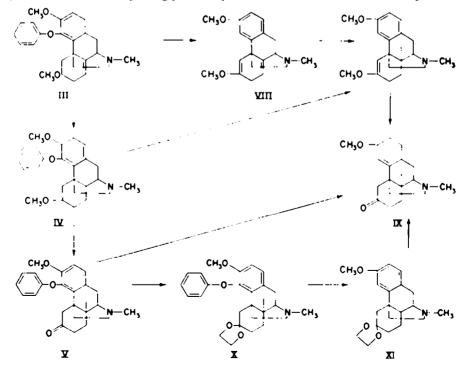
Under conditions similar to those used for sinomenine, dihydrothebaine- $\phi$  (II) was converted to the 4-phenylether (III) in 85 per cent yield. Hydrogenation of this compound over palladium-strontium carbonate gave the 4-phenylether of dihydrothebainone- $\Delta^5$ -enol methylether (IV) and successive treatment with dilute hydrochloric acid gave dihydrothebainone-4-phenylether (V) in about 70 per cent yield based on dihydrothebaine- $\phi$ -phenylether (III).

The Ullmann reaction of dihydrothebainone- $\Delta^5$ -enol methylether (VI) and of dihydrothebainone (VII) gave their respective phenylethers in about 70 per cent yield. Sodium-liquid ammonia reduction of dihydrothebaine- $\phi$ -phenylether (III) afforded desoxydihydrothebainc- $\phi$  (VIII) in 90 per cent yield. After hydrogenation, this compound was treated with dilute hydrochloric acid to give desoxydihydrothebainone (IX) in 50 per cent yield. Sodium-ammonia reduction of the crude phenylether of

<sup>•</sup> An outline of this paper was reported at the I.U.P.A.C. Symposium on the Chemistry of Natural Products in Melbourne, Australia, August, 1960.


<sup>+</sup> Y. K. Sawa, N. Tsuji and S. Maeda, Tetrahedron 15, 144 (1961).

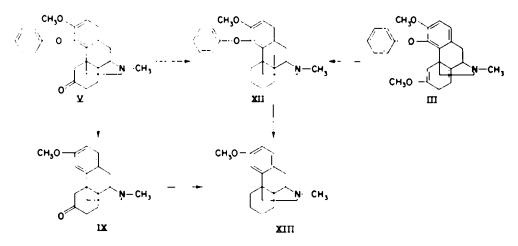
<sup>&</sup>lt;sup>1</sup> R. Grewe and A. Mondon, Chem. Ber. 81, 279 (1948); R. Grewe, A. Mondon and E. Nolte, Liebigs Ann. 564, 161 (1949).


<sup>\*</sup>O. Schnider and A. Grüssner, Helv. Chim. Acta 32, 821 (1949): Ibid 34, 2211 (1951): O. Schnider, A. Brossi and K. Vogler, *Ibid* 37, 710 (1954): *Ibid* 33, 1437 (1950). \*K. W. Bentley and R. Robinson, *Experientia* 6, 353 (1950): K. W. Bentley, R. Robinson and A. E. Wain,

J. Chem. Soc. 1952, 958.

Elimination of the 4-hydroxyl group of the alkaloids related to morphine II




dihydrothebainone- $\Delta^{\delta}$ -enol methylether (IV) and successive hydrolysis also gave the same carbonyl compound (IX) in 85 per cent yield. Dihydrothebainone-4-phenylether (V) was treated with ethylene glycol and *p*-toluene sulfonic acid in order to protect the



155

6-carbonyl group and successive sodium-ammonia reduction of the product gave the ethylene glycol ketal of desoxydihydrothebainone (XI). The action of dilute hydrochloric acid on the ketal derivative gave desoxydihydrothebainone i.e. (-)-3-methoxy-6-oxo-N-methylmorphinan (IX) in 75 per cent yield based on dihydrothebainone-4-phenylether.

Sodium-ammonia reduction of dihydrothebainone-4-phenylether (V) also gave the same desoxy base, but in a poor yield. Furthermore, tetrahydrodesoxycodeine-4-phenylether (XII) was obtained from dihydrothebainone-4-phenylether (V) and dihydrothebaine- $\phi$ -phenylether (III) by the Clemmensen reduction in yields of 85 and 25 per cent respectively.



The 4-phenoxy group of tetrahydrodesoxycodeine (XII) was also eliminated by sodium-ammonia reduction to yield (...)-3-methoxy-N-methylmorphinan (XIII) in almost quantitative yield. The Clemmensen reduction of desoxydihydrothebainone (IX) also gave the same compound (XIII) in 55 per cent yield. A number of these new 4-desoxy compounds have been screened for analgesic and antitussive activity, but the pharmacology of these compounds will be reported elsewhere.

# EXPERIMENTAL

All melting points are uncorrected. Analyses of the compounds were carried out by Messrs. K. Miyahara, Y. Daikatsu, T. Takaoka and Miss U. Kasugai of our laboratory. The infra-red spectra were determined by Messrs. Y. Matsui and M. Takasuka on a Koken D.S. 301 infra-red spectro-photometer.

## Dihydrothebaine- $\phi$ -4-phenylether

A pyridine solution of 47.1 g dihydrothebaine- $\phi$  and 5.71 g bromobenzene was refluxed for 10 hr under stirring with 32.4 g finely powdered K<sub>3</sub>CO<sub>3</sub> and 4.7 g copper. The reaction mixture was treated as in the case of sinomenine-4-phenylether. The benzene eluate gave 50.38 g dihydrothebaine- $\phi$ -4-phenylether (86%) which crystallized from isopropanol, m.p. 135-136°,  $[\alpha]_{D}^{10} + 34.1^{\circ} \pm 2^{\circ}$  (c,

0.973, alc.). I.R.  $\lambda_{max}^{CHCL}$  1710 cm<sup>-1</sup>, 1665 cm<sup>-1</sup> (- C- ·C OCH<sub>3</sub>). (Found: C, 77.17; H, 7.10; N, 3.66. C<sub>24</sub>H<sub>27</sub>O<sub>3</sub>N requires: C, 77.09; H, 6.99; N, 3.60%).

The methiodide was prepared in and crystallized from alcohol, m.p. 191–192°. (Found: C, 57.98: H, 6.26: N, 2.12.  $C_{14}H_{17}O_3N$  CH<sub>3</sub>I- $C_{14}H_0$ H requires: C, 58.23: H, 6.28: N, 2.42%).

The picrate was prepared in ether and crystallized from alcohol, m.p. 187-188°. (Found: C, 60.05; H, 5.04; N, 9.00.  $C_{xx}H_{xz}O_xN_cC_6H_3O_zN_3$  requires: C, 60.18; H, 4.89; N, 9.06.°.).

## 4-Phenylether of dihydrothebainone- $\Delta^{5}$ -enol methyl ether

(a) From dihydrothebaine- $\phi$ -4-phenylether. Twenty grams of dihydrothebaine- $\phi$ -4-phenylether was hydrogenated over 16 g palladium strontium carbonate (5% Pd) in 300 cc alcohol. After absorption of 1290 cc hydrogen in 15 hr and filtration of the catalyst, the solvent was removed to yield 20.2 g of crude product, m.p. 92–95°. A small sample was recrystallized from pet. ether for analysis, m.p.

106 107 . 
$$[x]_D^{st} = 55.4 \pm 1^\circ$$
 (c, 2.069, alc.). I.R.  $\lambda_{max}^{CHC1_3}$  1662 cm<sup>-1</sup>  $\begin{pmatrix} H \\ | \\ C \\ OCH_3 \end{pmatrix}$ . (Found:

C, 76:49; H, 7:47; N, 3:46. C<sub>10</sub>H<sub>10</sub>O<sub>3</sub>N requires: C, 76:69; H, 7:47; N, 3:58%).

(b) From dihydrothebainone- $\Delta^3$ -enol methylether. A pyridine solution of 9.45 g dihydrothebainone- $\Delta^3$ -enol methylether and 9.4 g bromobenzene was refluxed for 15 hr with K<sub>3</sub>CO<sub>3</sub> and copper. The reaction mixture was treated as usual and the product was chromatographed on alumina. The benzene eluate gave 11.28 g of a syrup which on standing solidified, m.p. 93–97°. A small sample was recrystallized from pet. ether, m.p. 106–107°. This compound was not depressed on admixture with the sample obtained from dihydrothebaine- $\phi$ -4-phenylether.

#### Dihydrothebainone-4-phenylether

(a) From the phenylether of dihydrothebainone- $\Delta^3$ -enol methylether. A solution of 11-28 g of the crude phenylether of dihydrothebainone- $\Delta^3$ -enol methylether in 55 cc 2 N HCl was heated for 10 min on a water-bath, cooled to room temp, and made basic with ammonia. The precipitated oil solidified on standing (8.9 g) and was recrystallized from isopropanol, 8-18 g (69% based on dihydrothebainone- $\Delta^3$ -enolmethylether.) m.p. 145-146°. [ $\alpha$ ]<sup>29</sup>/<sub>2</sub> + 11·2° ± 2° (c, 0.980, alc.). I.R.  $\lambda$ <sup>(HCl)</sup><sub>max</sub> 1712 cm<sup>-1</sup> (-C - O). (Found: C, 73·08; H, 7·41; N, 3·87; H<sub>2</sub>O, 3·92. C<sub>14</sub>H<sub>27</sub>O<sub>3</sub>N·H<sub>2</sub>O requires: C, 72·88; H, 7·39; N, 3·45; H<sub>2</sub>O, 4·55°<sub>0</sub>).

The hydrochloride crystallized from alcohol-ethyl acetate, m.p. 276 277° (dec). (Found: C, 66.94; H, 6.90; N, 3.12; Cl, 8.23.  $C_{14}H_{12}O_3N$ ·HCl·H<sub>1</sub>O requires: C, 66.73; H, 7.00; N, 3.25; Cl, 8.20°<sub>6</sub>).

(b) From dihydrothebainone. A pyridine solution of 9.04 g dihydrothebainone and 9.4 g bromobenzene was refluxed for 15 hr with 12.4 g finely powdered  $K_2CO_3$  and 1 g copper. The benzene eluate afforded 9.04 g of the crude base which recrystallized from isopropanol, m.p. 144–145°, 8.23 g (71%). The mixed m.p. with the sample prepared from the phenylether of dihydrothebainone- $\Delta^3$ -enol methylether, was 145–146°.

## Desoxydihydrothebaine-ø

A solution of 15 g dihydrothebaine- $\phi$ -4-phenylether in 150 cc toluene was added dropwise to 150 cc liquid ammonia at -50- 55°. 2.8 g metallic sodium was added to this stirred solution. After 1 hr the reaction mixture was worked up as described in the previous paper. The crude base was recrystallized from pet. ether, m.p. 86 87°, 10.3 g (90%). [ $\alpha$ ]<sub>D</sub><sup>16</sup> = 24.9°  $\pm$  2° (c, 2.113, alc.). I.R.  $\lambda_{max}^{CHCl_3}$  1707 cm <sup>-1</sup>, 1666 cm <sup>-1</sup>  $\begin{pmatrix} H \\ -C \\ OCH_3 \end{pmatrix}$ . (Found: C, 76.99; H, 7.75; N, 4.66. C<sub>19</sub>H<sub>33</sub>O<sub>2</sub>N

requires: C, 76.73; H, 7.80; N, 4.71%).

#### Desoxydihydrothebainone- $\Delta^3$ -enol methylether

(a) From the phenylether of dihydrothebainone- $\Delta^4$ -enol methylether. A solution of 10.1 g of the phenylether of dihydrothebainone- $\Delta^4$ -enol methylether in 40 cc toluene was reduced with 1.9 g metallic sodium in 300 cc liquid ammonia. After 1 hr the reaction mixture yielded 7.7 g of crude

product (almost quantitative). A small sample was recrystallized from pet. ether to give colorless

needles, m.p. 103-5-104-5".  $[\alpha_D^{50} - 70.5^{\circ} \pm 2^{\circ}(c, 1.039, alc.).$  1.R.  $\lambda_{max}^{CHCl} = 1664 \text{ cm}^{-1} \begin{pmatrix} H \\ C - C \\ OCH_2 \end{pmatrix}$ 

(Found: C, 76.44; H, 8.51; N, 4.48. C19H22O2N requires: C, 76.22; H, 8.42; N, 4.68%).

(b) From desoxydihydrothebaine- $\phi$ . 2 g desoxydihydrothebaine- $\phi$  was hydrogenated over 0.25 g Adams' catalyst in 50 cc alcohol. After 22 hr and absorption of 1 mole H<sub>1</sub>, the catalyst was removed and the filtrate concentrated to yield 2 g crude product. This base could not be crystallized but treatment with dil HCl gave 0.85 g desoxydihydrothebainone.

## Desoxy dihydrothebainone

(a) From desoxydihydrothebainone- $\Delta^4$ -enol methylether. A solution of 30.5 g desoxydihydrothebainone- $\Delta^4$ -enol methylether, m.p. 103.5-104.5°, in 150 cc 2 N HCl was heated for 10 min on a water bath. The cooled solution was diluted with NaOH until basic and the precipitated colorless solid washed with water and dried, 27.8 g (96%), m.p. 183-186°. A small sample was crystallized from alcohol for analysis, m.p. 187 188.5°.  $[\alpha]_{\rm B}^{\rm n1} = 97.3^{\circ} \pm 2^{\circ}$  (c, 2.094, alc.). I.R.  $\lambda_{\rm met}^{\rm Cm}$  1708 cm<sup>-1</sup> (>C O). (Found: C, 76.02; H, 8.21; N, 4.80. C<sub>10</sub>H<sub>23</sub>O<sub>2</sub>N requires: C, 75.75; H, 8.12; N, 4.91%).

(b) From the ketal of dihydrothebainone-4-phenylether. A benzene solution of 3.77 g dihydrothebainone-4-phenylether and 10 cc ethylene glycol was refluxed with 3.66 g toluene-p-sulphonic acid for 8 hr, with an "azeotropic" receiver to collect the volatile products. After cooling, the reaction mixture was treated with 10% Na<sub>2</sub>CO<sub>3</sub> until basic, washed with water and dried yielding 4.18 g of crude ketal derivative as a syrup. A solution of 2.8 g of this crude ketal in 50 cc ether was added dropwise to 100 cc liquid ammonia and the mixture treated with 0.35 g metallic sodium. The reaction mixture yielded 2.42 g of the crude desoxy base, m.p. 82 90°. A small sample was crystallized from ether for analysis, m.p. 96 97°.  $\{x\}_{x=0}^{y=1} = 32.5^{\circ} \pm 2^{\circ}$  (c, 1.046, alc.). (Found: C, 72.85: H, 8.37: N, 4.12.  $C_{x0}H_{x}O_3N$  requires: C, 72.92: H, 8.26: N, 4.25%).

The methiodide<sup>•</sup> was prepared in and crystallized from acetone, m.p. 241–242'. (Found: C, 53-59; H, 6.87; N, 2.75; I, 25-52.  $C_{30}H_{37}O_3N$ ·CH<sub>3</sub>I-1/2CH<sub>3</sub>COCH<sub>3</sub> requires: C, 54-00; H, 6.65; N, 2.80; I, 25-36.%).

A solution of 1.2 g of the crude ketal of the desoxy compound in 10 cc 5% HCl was heated for several min. The reaction mixture was made basic with dil ammonia yielding 1.01 g of the colorless solid, m.p. 183–186°. The carbonyl compound recrystallized from alcohol in small plates, m.p. 187–189°. The infra-red spectrum was identical with that of the sample prepared from desoxydihydrothebainone- $\Delta^3$ -enol methylether.

(c) From dihydrothebainone-4-phenylether. A solution of 10 g dihydrothebainone-4-phenylether in 100 cc toluene was added dropwise to 100 cc liquid ammonia and the mixture reduced with 2.6 g metallic sodium. The reaction mixture yielded a crystalline material insoluble in the toluene solution.

The residue (6.02 g) from the toluene was crystallized from alcohol and yielded 3.5 g (48%) of colorless plates, m.p. 187–189°. This compound was identified as desoxydihydrothebainone.

The crystalline material (0.51 g), insoluble in toluene, had m.p. 201-205° and recrystallized from alcohol to give colorless prisms, m.p. 203-205°. The infra-red spectrum did not indicate the absorption band due to carbonyl group but that of hydroxyl group. (Found: C, 75.24; H, 8.74; N, 5.01.  $C_{18}H_{24}O_2N$  requires: C, 75.22; H, 8.77; N, 4.87%). It appeared to be 4-desoxydihydrothebainol.

# Tetrahydrodesoxycodeine-4-phenylether

(a) From dihydrothebainone-4-phenylether. Amalgamated zinc (prepared from 20 g mossy zinc and 2 g mercuric chloride) was added in small portions to a hot solution of 3.0 g dihydrothebainone-4-phenylether in 25 cc conc HCl and 10 cc glacial acetic acid during 2 hr. The mixture was heated on a waterbath for 3 hr, during which time 8 cc conc HCl was added every  $\frac{1}{2}$  hr.

The solution was diluted, made basic with NaOH and extracted with benzene. The residue was treated with hydroxylamine in methanol and the crude product was chromatographed on alumina in

• The infra-red spectrum of this compound showed the absorption band due to carbonyl group.

ether solution to yield 2.34 g tetrahydrodesoxycodeine-4-phenylether (85%), m.p. 92-93°.  $[\alpha_{10}^{10} - 6.7^{\circ} \pm 2^{\circ} (c, 2.202, alc.).$  (Found: C, 79.13; H, 8.06; N, 3.54. C<sub>34</sub>H<sub>22</sub>O<sub>3</sub>N requires: C, 79.30; H, 8.04; N, 3.85%).

The picrate crystallized from alcohol, m.p.  $218-219^{\circ}$  (dec). (Found: C, 60.91; H, 5.64; N, 9.26. C<sub>14</sub>H<sub>19</sub>O<sub>1</sub>N·C<sub>4</sub>H<sub>4</sub>O<sub>1</sub>N·C<sub>4</sub>H<sub>4</sub>O<sub>5</sub>N, requires: C, 60.80; H, 5.44; N, 9.46%).

The methiodide recrystallized from alcohol, m.p. 239-240°.  $[x]_{D^0}^{h_0} = 5\cdot3^\circ \pm 2^\circ (c, 0.781, alc.)$ . The infra-red spectrum of tetrahydrodesoxycodeine-4-phenylether in chloroform was identical with that of desmethoxydesoxodihydrosinomenine-4-phenylether.

(b) From dihydrothebaine- $\phi$ -4-phenylether. A mixture of 5 g dihydrothebaine- $\phi$ -4-phenylether, amalgamated zinc (prepared from 30 g mossy zinc) and 110 cc of conc HCl was heated for 6 hr.

After treatment with hydroxylamine, 4.89 g of the crude base was chromatographed and the eluate treated with picric acid. Recrystallization of the picrate raised the m.p. to 217-218° (dec). Liberation of the picrate with dil NaOH gave 1.15 g tetrahydrodesoxycodeine-4-phenylether (25%), m.p. 89-91°. The m.p. showed no depression when mixed with the sample obtained from dihydrothebainone-4-phenylether.

## (-)-3-Methoxy-N-methylmorphinan

(a) From tetrahydrodesoxycodeine-4-phenylether. A solution of 2.34 g tetrahydrodesoxycodeine-4-phenylether in 100 cc ether was added dropwise to 100 cc liquid ammonia and the mixture treated with 0.55 g metallic sodium yielding 1.75 g of crude product, m.p. 104–107°. Chromatography of this material in ether over activated alumina, raised the m.p. to 106–108° and afforded 1.70 g of the desoxy base (97%).  $[x]_{19}^{19} = 45.9^{\circ} \pm 2^{\circ} (c, 2.018, alc.).$ 

Treatment of the base with 48% HBr gave ( )-3-hydroxy-N-methylmorphinan, m.p. 198-199°.  $\alpha]_{D}^{160} = 39.8^{\circ} + 2^{\circ} (c, 3.009, alc.)$ . This compound was not depressed on admixture with the sample prepared from ( - )-1-(*p*-methoxybenzyl)-2-methyl-1,2,3,4,5,6,7,8-octahydroisoquinoline according to Schnider.

(b) From desoxydihydrothebainone. A solution of 1 g desoxydihydrothebainone in 30 cc conc HCl was reduced with amalgamated zinc (prepared from 10 g mossy zinc). Treatment of the reaction mixture with hydroxylamine and additional chromatography on alumina gave 0.522 g of the desoxy base. The m.p.,  $108-109^{\circ}$  was not depressed on admixture with an authentic sample of (-)-3-methoxy-N-methyl-morphinan,  $[\alpha]_{0}^{10} = 47.0^{\circ} \pm 2^{\circ}$  (c, 1.965, alc.).

Acknowledgements - We are indebted to emeritus Prof. E. Ochiai of Tokyo University, Prof. M. Tomita of Kyoto University and Dr. K. Takeda, director of our laboratory for valuable discussions.

Amylenehydrate adduct.